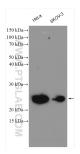
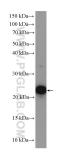
For Research Use Only

UBE2T/HSPC150 Polyclonal antibody

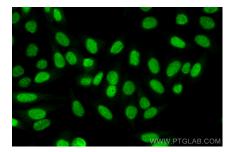
Catalog Number:10105-2-AP

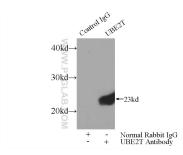

Featured Product 21 Publications

Antibodies | ELISA kits | Proteins www.ptglab.com


Basic Information	Catalog Number: 10105-2-AP	GenBank Accession Number: BC004152	Purification Method: Antigen affinity purification	
	Concentration:	GenelD (NCBI):	Recommended Dilutions:	
	800 µg/ml	29089	WB 1:500-1:2000	
	Source:	UNIPROT ID:	IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate	
	Rabbit	Q9NPD8	IF/ICC 1:200-1:800	
	lsotype: IgG	Full Name: ubiquitin-conjugating enzyme E2	2T	
	Immunogen Catalog Number:	(putative)		
	AG0153	Calculated MW:		
		23 kDa		
		Observed MW: 23 kDa		
Applications	Tested Applications:	Positive Controls:		
	WB, IF/ICC, IP, ELISA	WB : HeLa cells, HepG2 cells, K-562 cells, Jurkat cells		
	Cited Applications:	SKOV-3 c	•	
	WB, IHC, IF, IP	IP : HeLa o	IP : HeLa cells,	
	Species Specificity: human	IF/ICC : H	IF/ICC : HepG2 cells,	
	Cited Species:			
	human			
	The ubiquitin (Ub)-mediated protein degradation pathway involves three sequential enzymatic steps that facilitate the conjugation of Ub to specific protein substrates. The first step requires ATP-dependent activation of the C- terminus of Ub and the assembly of multi-Ubs by Ub-activating enzyme E1. The ubiquitin-conjugating enzyme E2, catalytic (UBCc) domain, is then conjugated to Ubs, through a thiol-ester linkage between a conserved cysteine and the C-terminus of Ub, to generate an intermediate Ub-E2 complex. Then the E3, a ligase, catalyzes the transfer of Ub from E2 to the appropriate substrate. This pathway regulates many fundamental cellular processes. There are also other E2s which form thiol-ester linkages without the use of E3s as well as several UBC homologs (TSG101, Mms2, Croc-1 and similar proteins), which lack the active site cysteine essential for ubiquitination and appear to function in DNA repair pathways.			
Background Information	terminus of Ub and the assembly catalytic (UBCc) domain, is then c the C-terminus of Ub, to generate from E2 to the appropriate substra other E2s which form thiol-ester li Croc-1 and similar proteins), whic	of multi-Ubs by Ub-activating enzyme onjugated to Ubs, through a thiol-este an intermediate Ub-E2 complex. The ate. This pathway regulates many func inkages without the use of E3s as well	es ATP-dependent activation of the C- E E1. The ubiquitin-conjugating enzyme E2, r linkage between a conserved cysteine and n the E3, a ligase, catalyzes the transfer of U damental cellular processes. There are also as several UBC homologs (TSG101, Mms2,	
Background Information	terminus of Ub and the assembly catalytic (UBCc) domain, is then c the C-terminus of Ub, to generate from E2 to the appropriate substra other E2s which form thiol-ester li Croc-1 and similar proteins), whic in DNA repair pathways.	of multi-Ubs by Ub-activating enzyme onjugated to Ubs, through a thiol-este an intermediate Ub-E2 complex. The ate. This pathway regulates many func inkages without the use of E3s as well	es ATP-dependent activation of the C- E 1. The ubiquitin-conjugating enzyme E2, r linkage between a conserved cysteine and n the E3, a ligase, catalyzes the transfer of U damental cellular processes. There are also as several UBC homologs (TSG101, Mms2,	
	terminus of Ub and the assembly catalytic (UBCc) domain, is then o the C-terminus of Ub, to generate from E2 to the appropriate substra other E2s which form thiol-ester li Croc-1 and similar proteins), whic in DNA repair pathways.	of multi-Ubs by Ub-activating enzyme onjugated to Ubs, through a thiol-este an intermediate Ub-E2 complex. Ther ate. This pathway regulates many fund inkages without the use of E3s as well ch lack the active site cysteine essenti	es ATP-dependent activation of the C- E 1. The ubiquitin-conjugating enzyme E2, r linkage between a conserved cysteine and n the E3, a ligase, catalyzes the transfer of U damental cellular processes. There are also . as several UBC homologs (TSG101, Mms2, al for ubiquitination and appear to function	
	terminus of Ub and the assembly catalytic (UBCc) domain, is then c the C-terminus of Ub, to generate from E2 to the appropriate substra other E2s which form thiol-ester li Croc-1 and similar proteins), whic in DNA repair pathways.	of multi-Ubs by Ub-activating enzyme onjugated to Ubs, through a thiol-este an intermediate Ub-E2 complex. The tet. This pathway regulates many func inkages without the use of E3s as well th lack the active site cysteine essenti Pubmed ID Journal	es ATP-dependent activation of the C- E1. The ubiquitin-conjugating enzyme E2, r linkage between a conserved cysteine and n the E3, a ligase, catalyzes the transfer of U damental cellular processes. There are also as several UBC homologs (TSG101, Mms2, al for ubiquitination and appear to function Application	
	terminus of Ub and the assembly catalytic (UBCc) domain, is then c the C-terminus of Ub, to generate from E2 to the appropriate substra other E2s which form thiol-ester li Croc-1 and similar proteins), whic in DNA repair pathways.	of multi-Ubs by Ub-activating enzyme onjugated to Ubs, through a thiol-este an intermediate Ub-E2 complex. There ate. This pathway regulates many fund inkages without the use of E3s as well ch lack the active site cysteine essenti Pubmed ID Journal 36156329 Cancer Sci	es ATP-dependent activation of the C- E 1. The ubiquitin-conjugating enzyme E2, r linkage between a conserved cysteine and n the E3, a ligase, catalyzes the transfer of U damental cellular processes. There are also as several UBC homologs (TSG101, Mms2, al for ubiquitination and appear to function Application WB,IHC,IF,IP WB,IHC	
	terminus of Ub and the assembly catalytic (UBCc) domain, is then c the C-terminus of Ub, to generate from E2 to the appropriate substra other E2s which form thiol-ester li Croc-1 and similar proteins), whic in DNA repair pathways.	of multi-Ubs by Ub-activating enzyme onjugated to Ubs, through a thiol-este an intermediate Ub-E2 complex. There is the this pathway regulates many func- inkages without the use of E3s as well the lack the active site cysteine essention Pubmed ID Journal 36156329 Cancer Sci 33014154 Oncol Lett	es ATP-dependent activation of the C- E 1. The ubiquitin-conjugating enzyme E2, r linkage between a conserved cysteine an n the E3, a ligase, catalyzes the transfer of U Jamental cellular processes. There are also . as several UBC homologs (TSG101, Mms2, al for ubiquitination and appear to function Application WB,IHC,IF,IP WB,IHC	
	terminus of Ub and the assembly catalytic (UBCc) domain, is then c the C-terminus of Ub, to generate from E2 to the appropriate substra other E2s which form thiol-ester li Croc-1 and similar proteins), whic in DNA repair pathways.	of multi-Ubs by Ub-activating enzyme onjugated to Ubs, through a thiol-este an intermediate Ub-E2 complex. Ther ate. This pathway regulates many func inkages without the use of E3s as well the lack the active site cysteine essentian 36156329 Cancer Sci 33014154 Oncol Lett 31571992 Cancer Manag Reserved after shipment.	es ATP-dependent activation of the C- E 1. The ubiquitin-conjugating enzyme E2, r linkage between a conserved cysteine and n the E3, a ligase, catalyzes the transfer of U Jamental cellular processes. There are also as several UBC homologs (TSG101, Mms2, al for ubiquitination and appear to function Application WB,IHC,IF,IP WB,IHC	

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.


Selected Validation Data


HeLa cells were subjected to SDS PAGE followed by western blot with 10105-2-AP (UBE2T/HSPC 150 antibody) at dilution of 1:1000 incubated at room temperature for 1.5 hours.

HeLa cells were subjected to SDS PAGE followed by western blot with 10105-2-AP (UBE2T/HSPC 150 antibody) at dilution of 1:1000 incubated at room temperature for 1.5 hours.

Immunofluorescent analysis of (4% PFA) fixed HepG2 cells using UBE2T/HSPC 150 antibody (10105-2-AP) at dilution of 1:400 and CoraLite®488-Conjugated Goat Anti-Rabbit IgG(H+L).

IP result of anti-UBE2T/HSPC150 (IP:10105-2-AP, 3ug; Detection:10105-2-AP 1:500) with HeLa cells lysate 3000ug.