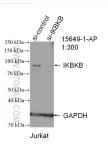
For Research Use Only

IKBKB Polyclonal antibody Catalog Number:15649-1-AP Featured Product

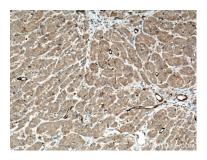
106 Publications

	Catalog Number: 15649-1-AP	GenBank Accession I BC006231	Number:	Purification Method: Antigen affinity purification					
	Concentration:	GeneID (NCBI):		Recommended Dilutions:					
	400 ug/ml	3551		WB 1:300-1:1000					
	Source:	UNIPROT ID: 014920		IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate IHC 1:50-1:500					
	Rabbit								
	Isotype: IgG Immunogen Catalog Number: AG8191	Full Name: inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta Calculated MW: 756aa,81 kDa; 256aa,29 kDa Observed MW: 80 kDa, 86 kDa, 87 and 29 kDa							
					Applications	Tested Applications: WB, IHC, IP, ELISA	Positive Controls:		
Cited Applications: WB, IHC, IF, IP, CoIP	WB : Jurkat cells, K-562 cells, HepG2 cells IP : Jurkat cells,								
Species Specificity: human, mouse, rat		IHC : human liver cancer tissue, human prostate cancer tissue							
Cited Species: human, mouse, rat, pig, bovine Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0									
						IKBKB, also named as IKKB, IKK2, NFKBIKB and IKK-B, belongs to the protein kinase superfamily, Ser/Thr protein kinase family and I-kappa-B kinase subfamily. IKBKB is a Serine kinase that plays an essential role in the NF-kappa-B signaling pathway. It acts as part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues. In addition to the NF-kappa-B inhibitors, IKBKB phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE. It also phosphorylates other substrates including NCOA3, BCL10 and IRS1. Within the nucleus, IKBKB acts as an adapter protein for NFKBIA degradation in UV-induced NF-kappa-B activation. This antibody can identify 4 isoform of IKBKB with the molecular weight of 80, 86, 87 and 29 kDa.			
Background Informatior	kinase family and I-kappa-B kina B signaling pathway. It acts as pa activation and phosphorylates inl inhibitors, IKBKB phosphorylates s kappa-B subunits RELA and NFKB1 substrates including NCOA3, BCL: degradation in UV-induced NF-ka	se subfamily. IKBKB is a S rt of the canonical IKK con hibitors of NF-kappa-B on several other components L, as well as IKK-related k 10 and IRS 1. Within the nu	erine kinase tha nplex in the conv 2 critical serine s of the signaling inases TBK1 and ucleus, IKBKB acts	t plays an essential role in the NF-kappa rentional pathway of NF-kappa-B residues. In addition to the NF-kappa-B pathway including NEMO/IKBKG, NF- IKBKE. It also phosphorylates other s as an adapter protein for NFKBIA					
	kinase family and I-kappa-B kina B signaling pathway. It acts as pa activation and phosphorylates inl inhibitors, IKBKB phosphorylates s kappa-B subunits RELA and NFKB substrates including NCOA3, BCL degradation in UV-induced NF-ka weight of 80, 86, 87 and 29 kDa.	se subfamily. IKBKB is a S rt of the canonical IKK con nibitors of NF-kappa-B on several other components I, as well as IKK-related k 10 and IRS1. Within the nu ppa-B activation. This ant	erine kinase tha nplex in the conv 2 critical serine s of the signaling inases TBK1 and Jcleus, IKBKB act: tibody can identi	t plays an essential role in the NF-kappa rentional pathway of NF-kappa-B residues. In addition to the NF-kappa-B pathway including NEMO/IKBKG, NF- IKBKE. It also phosphorylates other s as an adapter protein for NFKBIA fy 4 isoform of IKBKB with the molecular					
Background Informatior	kinase family and I-kappa-B kina B signaling pathway. It acts as para activation and phosphorylates inl inhibitors, IKBKB phosphorylates s kappa-B subunits RELA and NFKB3 substrates including NCOA3, BCL degradation in UV-induced NF-ka weight of 80, 86, 87 and 29 kDa.	se subfamily. IKBKB is a S rt of the canonical IKK con hibitors of NF-kappa-B on several other components I, as well as IKK-related k 10 and IRS1. Within the nu ppa-B activation. This and Pubmed ID Journ	erine kinase tha nplex in the conv 2 critical serine s of the signaling inases TBK1 and ucleus, IKBKB acts tibody can identi	t plays an essential role in the NF-kappa rentional pathway of NF-kappa-B residues. In addition to the NF-kappa-B pathway including NEMO/IKBKG, NF- IKBKE. It also phosphorylates other is as an adapter protein for NFKBIA fy 4 isoform of IKBKB with the molecular Application					
	kinase family and I-kappa-B kina B signaling pathway. It acts as paractivation and phosphorylates infinibitors, IKBKB phosphorylates is kappa-B subunits RELA and NFKB3 substrates including NCOA3, BCL: degradation in UV-induced NF-ka weight of 80, 86, 87 and 29 kDa.	se subfamily. IKBKB is a S rt of the canonical IKK con nibitors of NF-kappa-B on several other components L, as well as IKK-related k 10 and IRS1. Within the nu ppa-B activation. This and Pubmed ID Journ 36184549 Int He	erine kinase tha nplex in the conv 2 critical serine s of the signaling inases TBK1 and ucleus, IKBKB acts tibody can identi nal eart J	t plays an essential role in the NF-kappa rentional pathway of NF-kappa-B residues. In addition to the NF-kappa-B pathway including NEMO/IKBKG, NF- IKBKE. It also phosphorylates other is as an adapter protein for NFKBIA fy 4 isoform of IKBKB with the molecular Application WB					
	kinase family and I-kappa-B kina B signaling pathway. It acts as paractivation and phosphorylates inlinhibitors, IKBKB phosphorylates skappa-B subunits RELA and NFKB3 substrates including NCOA3, BCL: degradation in UV-induced NF-ka weight of 80, 86, 87 and 29 kDa.	se subfamily. IKBKB is a S rt of the canonical IKK con hibitors of NF-kappa-B on several other components I, as well as IKK-related k IO and IRS1. Within the nu ppa-B activation. This and Pubmed ID Journ 36184549 Int He 34601083 J Ethr	erine kinase tha nplex in the conv 2 critical serine s of the signaling inases TBK1 and ucleus, IKBKB acts tibody can identi	t plays an essential role in the NF-kappa rentional pathway of NF-kappa-B residues. In addition to the NF-kappa-B pathway including NEMO/IKBKG, NF- IKBKE. It also phosphorylates other is as an adapter protein for NFKBIA fy 4 isoform of IKBKB with the molecular Application					

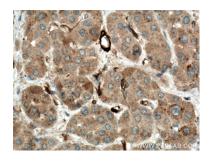

T: 4006900926

For technical support and original validation data for this product please contact: E: Proteintech-CN@ptglab.com

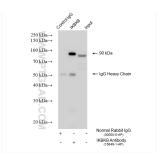
W: ptgcn.com


This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data



WB result of IKBKB antibody (15649-1-AP; 1:300; incubated at room temperature for 1.5 hours) with sh-Control and sh-IKBKB transfected Jurkat cells. $250 \text{ kDa} \rightarrow$ $150 \text{ kDa} \rightarrow$ $100 \text{ KDa} \rightarrow$ $70 \text{ KDa} \rightarrow$ $50 \text{ kDa} \rightarrow$ $40 \text{ KDa} \rightarrow$ $30 \text{ kDa} \rightarrow$ $20 \text{ kDa} \rightarrow$


Jurkat cells were subjected to SDS PAGE followed by western blot with 15649-1-AP (IKBKB antibody) at dilution of 1:600 incubated at room temperature for 1.5 hours.

Immunohistochemical analysis of paraffinembedded human liver cancer tissue slide using 15649-1-AP (IKBKB antibody) at dilution of 1:200 (under 10x lens. Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded human liver cancer tissue slide using 15649-1-AP (IKBKB antibody) at dilution of 1:200 (under 40x lens. Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

IP result of anti-IKBKB (IP:15649-1-AP, 4ug; Detection:15649-1-AP 1:3000) with Jurkat cells lysate 1400 ug.