For Research Use Only

ATR Polyclonal antibody

Catalog Number:19787-1-AP

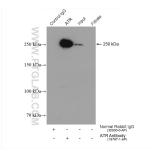
Featured Product

30 Publications

Basic Information	Catalog Number: 19787-1-AP	GenBank Accession Number: NM_001184		Purification Method: Antigen affinity purification	
	Size:	GenelD (NCBI):		Recommended Dilutions:	
	600 µg/ml	545		WB 1:500-1:1000	
	Source: Rabbit			IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate	
	lsotype: IgG				
		Calculated MW: 301 kDa			
	Observed MW: 250-290 kDa				
Applications	Tested Applications:		Positive Controls:		
	IP, WB, ELISA		WB : HeLa cells, mouse testis tissue		
	Cited Applications: WB,IHC,IF,CoIP		IP : mouse testis tissue,		
	Species Specificity: human, mouse				
	Cited Species: human, rat, mouse				
		ATR, also named as FRP1, belongs to the PI3/PI4-kinase family and ATM subfamily. ATR is a serine/threonine protein kinase which activates checkpoint signaling upon genotoxic stresses such as ionizing radiation (IR), ultraviolet light (UV), or DNA replication stalling, thereby acting as a DNA damage sensor. ATR recognizes the substrate consensus sequence [ST]-Q. ATR phosphorylates BRCA1, CHEK1, MCM2, RAD17, RPA2, SMC1 and TP53/p which collectively inhibit DNA replication and mitosis and promote DNA repair, recombination and apoptosis. AT phosphorylates 'Ser-139' of histone variant H2AX/H2AFX at sites of DNA damage, thereby regulating DNA damage response mechanism. It is required for FANCD2 ubiquitination. It is critical for maintenance of fragile site stabiliti and efficient regulation of centrosome duplication. ATR catalyze the reaction: ATP + a prosphoprotein. Defects in ATR are a cause of Seckel syndrome type 1 (SCKL1) which is a rare autosomal recessiv disorder characterized by growth retardation, microcephaly with mental retardation, and a characteristic 'birdheaded' facial appearance. The antibody can recognize all the isoforms of ATR.			
Background Informatior	ultraviolet light (UV), or DN, substrate consensus sequen which collectively inhibit D phosphorylates 'Ser-139' of response mechanism. It is re and efficient regulation of c phosphoprotein. Defects in A disorder characterized by gr	tes checkpoint signaling u A replication stalling, there ce [ST]-Q. ATR phosphoryla NA replication and mitosis histone variant H2AX/H2A equired for FANCD2 ubiqui entrosome duplication. AT ATR are a cause of Seckel s owth retardation, microcep	pon genotoxic stress by acting as a DNA ites BRCA 1, CHEK1, and promote DNA FX at sites of DNA c tination. It is critica R catalyze the react yndrome type 1 (SC whaly with mental m	ses such as ionizing radiation (IR), damage sensor. ATR recognizes the MCM2, RAD17, RPA2, SMC1 and TP53/ repair, recombination and apoptosis. A lamage, thereby regulating DNA dama I for maintenance of fragile site stabili- tion: ATP + a protein = ADP + a CKL1) which is a rare autosomal recessi etardation, and a characteristic 'bird-	
	ultraviolet light (UV), or DN, substrate consensus sequen which collectively inhibit D phosphorylates 'Ser-139' of response mechanism. It is re and efficient regulation of c phosphoprotein. Defects in A disorder characterized by gr headed' facial appearance.	tes checkpoint signaling u A replication stalling, there ce [ST]-Q. ATR phosphoryla NA replication and mitosis histone variant H2AX/H2A equired for FANCD2 ubiqui entrosome duplication. AT ATR are a cause of Seckel s owth retardation, microcep The antibody can recognize	bon genotoxic stress by acting as a DNA stes BRCA 1, CHEK1, and promote DNA FX at sites of DNA of tination. It is critica R catalyze the react yndrome type 1 (SC shaly with mental me all the isoforms of	ses such as ionizing radiation (IR), damage sensor. ATR recognizes the MCM2, RAD17, RPA2, SMC1 and TP53/ repair, recombination and apoptosis. A lamage, thereby regulating DNA dama I for maintenance of fragile site stabili- tion: ATP + a protein = ADP + a CKL1) which is a rare autosomal recessi etardation, and a characteristic 'bird- f ATR.	
	ultraviolet light (UV), or DN, substrate consensus sequen which collectively inhibit D phosphorylates 'Ser-139' of response mechanism. It is re and efficient regulation of c phosphoprotein. Defects in A disorder characterized by gr headed' facial appearance.	tes checkpoint signaling u A replication stalling, there ce [ST]-Q. ATR phosphoryla NA replication and mitosis histone variant H2AX/H2A equired for FANCD2 ubiqui entrosome duplication. AT ATR are a cause of Seckel s owth retardation, microcep The antibody can recognize Pubmed ID	bon genotoxic stress by acting as a DNA bates BRCA1, CHEK1, and promote DNA FX at sites of DNA of tination. It is critica R catalyze the react yndrome type 1 (SC shaly with mental me all the isoforms of Journal	ses such as ionizing radiation (IR), damage sensor. ATR recognizes the MCM2, RAD17, RPA2, SMC1 and TP53/ repair, recombination and apoptosis. A lamage, thereby regulating DNA dama; I for maintenance of fragile site stabili- tion: ATP + a protein = ADP + a KL1) which is a rare autosomal recessi etardation, and a characteristic 'bird- fATR. Application	
	ultraviolet light (UV), or DN, substrate consensus sequen which collectively inhibit D phosphorylates 'Ser-139' of response mechanism. It is re and efficient regulation of c phosphoprotein. Defects in A disorder characterized by gr headed' facial appearance." Author Jingyuan Sun	tes checkpoint signaling u A replication stalling, there ce [ST]-Q. ATR phosphoryl: NA replication and mitosis histone variant H2AX/H2A equired for FANCD2 ubiqui entrosome duplication. AT TTR are a cause of Seckel s owth retardation, microcep The antibody can recognize Pubmed ID 33087136	bon genotoxic stress by acting as a DNA bites BRCA 1, CHEK 1, and promote DNA FX at sites of DNA of tination. It is critica R catalyze the react yndrome type 1 (SC shaly with mental r e all the isoforms of Journal J Exp Clin Cancer R	ses such as ionizing radiation (IR), damage sensor. ATR recognizes the MCM2, RAD17, RPA2, SMC1 and TP53/ repair, recombination and apoptosis. A lamage, thereby regulating DNA damage I for maintenance of fragile site stabili- tion: ATP + a protein = ADP + a :KL1) which is a rare autosomal recessi- tetardation, and a characteristic 'bird- taTR. Application tes WB	
Background Information	ultraviolet light (UV), or DN, substrate consensus sequen which collectively inhibit D phosphorylates 'Ser-139' of response mechanism. It is re and efficient regulation of c phosphoprotein. Defects in A disorder characterized by gr headed' facial appearance.	tes checkpoint signaling u A replication stalling, there ce [ST]-Q. ATR phosphoryla NA replication and mitosis histone variant H2AX/H2A equired for FANCD2 ubiqui entrosome duplication. AT ATR are a cause of Seckel s owth retardation, microcep The antibody can recognize Pubmed ID 33087136 26451628	bon genotoxic stress by acting as a DNA bates BRCA1, CHEK1, and promote DNA FX at sites of DNA of tination. It is critica R catalyze the react yndrome type 1 (SC shaly with mental me all the isoforms of Journal	ses such as ionizing radiation (IR), damage sensor. ATR recognizes the MCM2, RAD17, RPA2, SMC1 and TP53/ repair, recombination and apoptosis. A lamage, thereby regulating DNA dama; I for maintenance of fragile site stabili- tion: ATP + a protein = ADP + a KL1) which is a rare autosomal recessi etardation, and a characteristic 'bird- fATR. Application	
	ultraviolet light (UV), or DN, substrate consensus sequen which collectively inhibit D phosphorylates 'Ser-139' of response mechanism. It is re and efficient regulation of c phosphoprotein. Defects in A disorder characterized by gr headed' facial appearance. Author Jingyuan Sun Xiufang Song	tes checkpoint signaling u A replication stalling, there ce [ST]-Q. ATR phosphoryla NA replication and mitosis histone variant H2AX/H2A equired for FANCD2 ubiqui entrosome duplication. AT ATR are a cause of Seckel s owth retardation, microcep The antibody can recognize Pubmed ID 33087136 26451628	bon genotoxic stress by acting as a DNA stes BRCA 1, CHEK1, and promote DNA FX at sites of DNA of tination. It is critica R catalyze the react yndrome type 1 (SC shaly with mental me all the isoforms of Journal J Exp Clin Cancer R Chem Res Toxicol	ses such as ionizing radiation (IR), damage sensor. ATR recognizes the MCM2, RAD17, RPA2, SMC1 and TP53/ repair, recombination and apoptosis. A lamage, thereby regulating DNA dama I for maintenance of fragile site stabili- tion: ATP + a protein = ADP + a CKL1) which is a rare autosomal recessi etardation, and a characteristic 'bird- f ATR. Application Res WB WB	

For technical support and original validation data for this product please contact:T: 4006900926E: Proteintech-CN@ptglab.comW: ptgcn.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.


Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 19787-1-AP (ATR antibody) at dilution of 1:800 incubated at room temperature for 1.5 hours.

250 kDa→ 150 kDa→ 150 kDa→ HeLa

19787-1-AP 1:600

IP result of anti-ATR (IP:19787-1-AP, 4ug; Detection:19787-1-AP 1:500) with mouse testis tissue lysate 2040 ug.

WB result of ATR antibody (19787-1-AP; 1:600; incubated at room temperature for 1.5 hours) with sh-Control and sh-ATR transfected HeLa cells.