For Research Use Only

PCNA Polyclonal antibody Catalog Number:10205-2-AP Featured Product

1062 Publications

Basic Information	Catalog Number: 10205-2-AP	BC000491	ion Number:	Purification Method: Antigen affinity purification	
	Concentration:GeneID (NCBI):253 ug/ml5111Source:UNIPROT ID:RabbitP12004Isotype:Full Name:			Recommended Dilutions: WB: 1:5000-1:50000 IP: 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate IHC: 1:1500-1:6000 IF-P: 1:50-1:500	
	IgG	proliferating cell nuclear antigen Calculated MW: 29 kDa/31 kDa			
	Immunogen Catalog Number: AG0277				
		Observed MW: 36-38 kDa			
Applications	Tested Applications:		Positive Con	Positive Controls:	
	WB, IHC, IF/ICC, IF-P, IP, ELISA Cited Applications: WB, IHC, IF, IP, CoIP, Cell treatment		cells, HepG2	WB: A431 cells, BALB/3T3 clone A31 cells, HEK293 cells, HepG2 cells, mouse liver tissue, mouse testis tissue, Raji cells, rat liver tissue, rat testis tissue, HeLa cells, Jurkat cells, MCF-7 cells, PC-12 cells, NIH/3T3 cells, C2C12 cells, mouse spleen tissue	
	Species Specificity: human, mouse, rat		cells, Jurkat		
	Cited Species: human, mouse, rat, rabbit, chicken, goat, sheep, fish, ducks, medaka embryos		IP : MCF-7 ce	IP : MCF-7 cells, N/A	
			tissue, huma	IHC : human stomach cancer tissue, human liver canc tissue, human malignant melanoma tissue, human breast cancer tissue, human colon cancer tissue	
	Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0				
				IF-P : mouse testis tissue, human breast cancer tissue IF/ICC : HepG2 cells, Neuro-2a cells, MCF-7 cells	
Background Information	polymerase δ in eukaryotic cells the control of eukaryotic DNA repl leading strand. PCNA induces a ro apurinic-apyrimidinic (AP) endon stimulate APEX2. PCNA protein is human differ by only 4 of 261 ami	This protein is an au ication by increasing bust stimulatory effe uclease, APEX2 activi highly conserved dur no acids. PCNA has b tibody raised against	ixiliary protein of D the polymerase's p ct on the 3'-5' exonu- ities. It has to be loa- ring evolution; the c een used as loading t an internal region	ded onto DNA in order to be able to educed amino acid sequences of rat and control for proliferating cells. This	
	polymerase δ in eukaryotic cells the control of eukaryotic DNA repl leading strand. PCNA induces a ro apurinic-apyrimidinic (AP) endom stimulate APEX2. PCNA protein is human differ by only 4 of 261 ami antibody is a rabbit polyclonal an	This protein is an au ication by increasing bust stimulatory effe uclease, APEX2 activi highly conserved dur no acids. PCNA has b tibody raised against dified PCNA is 36kDa	ixiliary protein of D the polymerase's p ct on the 3'-5' exonu- ities. It has to be loa- ring evolution; the c een used as loading t an internal region	NA polymerase delta and is involved in rocessibility during elongation of the iclease and 3'-phosphodiesterase, but not ded onto DNA in order to be able to educed amino acid sequences of rat and	
	polymerase δ in eukaryotic cells the control of eukaryotic DNA repl leading strand. PCNA induces a ro apurinic-apyrimidinic (AP) endon stimulate APEX2. PCNA protein is human differ by only 4 of 261 ami antibody is a rabbit polyclonal an weight of PCNA is 29 kDa, but mo	This protein is an au ication by increasing bust stimulatory effe uclease, APEX2 activi highly conserved dur no acids. PCNA has b tibody raised against dified PCNA is 36kDa	ixiliary protein of D the polymerase's p ct on the 3'-5' exonu- ities. It has to be loa- ring evolution; the c een used as loading t an internal region (PMID: 1358458).	NA polymerase delta and is involved in rocessibility during elongation of the iclease and 3'-phosphodiesterase, but not ded onto DNA in order to be able to educed amino acid sequences of rat and control for proliferating cells. This of human PCNA. The calculated molecula	
	polymerase δ in eukaryotic cells the control of eukaryotic DNA repl leading strand. PCNA induces a ro apurinic-apyrimidinic (AP) endon stimulate APEX2. PCNA protein is human differ by only 4 of 261 ami antibody is a rabbit polyclonal an weight of PCNA is 29 kDa, but mo	This protein is an au ication by increasing bust stimulatory effe uclease, APEX2 activi highly conserved dur no acids. PCNA has b tibody raised against dified PCNA is 36kDa Pubmed ID 36183674	ities It has to be loading evolution; the comparison of the second evolution; the compared evolution;	NA polymerase delta and is involved in rocessibility during elongation of the iclease and 3'-phosphodiesterase, but not ded onto DNA in order to be able to educed amino acid sequences of rat and control for proliferating cells. This of human PCNA. The calculated molecular Application	
	polymerase δ in eukaryotic cells the control of eukaryotic DNA repl leading strand. PCNA induces a ro apurinic-apyrimidinic (AP) endom stimulate APEX2. PCNA protein is human differ by only 4 of 261 ami antibody is a rabbit polyclonal an weight of PCNA is 29 kDa, but mor Author Yongchun Yu	This protein is an au ication by increasing bust stimulatory effe uclease, APEX2 activi highly conserved dur no acids. PCNA has b tibody raised against dified PCNA is 36kDa Pubmed ID 36183674 27684953	ities. It has to be loading evolution; the polymerase's part on the 3'-5' exonu- ities. It has to be loading to be compared as loading to be an internal region to (PMID: 1358458). Journal Transl Oncol	NA polymerase delta and is involved in rocessibility during elongation of the iclease and 3'-phosphodiesterase, but not ded onto DNA in order to be able to educed amino acid sequences of rat and control for proliferating cells. This of human PCNA. The calculated molecula Application WB	
Background Information Notable Publications	polymerase δ in eukaryotic cells the control of eukaryotic DNA repl leading strand. PCNA induces a ro apurinic-apyrimidinic (AP) endon stimulate APEX2. PCNA protein is human differ by only 4 of 261 ami antibody is a rabbit polyclonal an weight of PCNA is 29 kDa, but mod Author Yongchun Yu Bing Sun	This protein is an au ication by increasing bust stimulatory effe uclease, APEX2 activi highly conserved dur no acids. PCNA has b tibody raised against dified PCNA is 36kDa Pubmed ID 36183674 27684953 36169673 after shipment.	xiliary protein of D the polymerase's p ct on the 3'-5' exonu- ities. It has to be loa- ring evolution; the c een used as loading tan internal region (PMID: 1358458). Journal Transl Oncol PLoS One J Mol Med (Berl)	NA polymerase delta and is involved in rocessibility during elongation of the iclease and 3'-phosphodiesterase, but no ded onto DNA in order to be able to educed amino acid sequences of rat and control for proliferating cells. This of human PCNA. The calculated molecul Application WB WB	

For technical support and original validation data for this product please contact: T: 4006900926 E: Proteintech-CN@ptglab.com W: ptgcn.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

Immunofluorescent analysis of (4% PFA) fixed HepG2 cells using PCNA antibody (10205-2-AP) at dilution of 1:600 and Coralite®488-Conjugated AffiniPure Goat Anti-Rabbit IgG(H+L), CL94phalloidin (red), DAPI (Blue).

WB result of PCNA antibody (10205-2-AP, 1:10000) with si-control and si-PCNA transfected HEK293 cells.

Various lysates were subjected to SDS PAGE followed by western blot with 10205-2-AP (PCNA antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours.

IP result of anti-PCNA (IP:10205-2-AP, 4ug; Detection:10205-2-AP 1:20000) with MCF-7 cells lysate 1880 ug.

Immunohistochemical analysis of paraffinembedded human stomach cancer tissue slide using 10205-2-AP (PCNA antibody) at dilution of 1:3000 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunofluorescent analysis of (4% PFA) fixed mouse testis tissue using PCNA antibody (10205-2-AP) at dilution of 1:200 and CoraLite®488-Conjugated AffiniPure Goat Anti-Rabbit IgG(H+L).

Various lysates were subjected to SDS PAGE followed by western blot with 10205-2-AP (PCNA antibody) at dilution of 1:50000 incubated at room temperature for 1.5 hours.

Various lysates were subjected to SDS PAGE followed by western blot with 10205-2-AP (PCNA antibody) at dilution of 1:50000 incubated at room temperature for 1.5 hours.

Various lysates were subjected to SDS PAGE followed by western blot with 10205-2-AP (PCNA antibody) at dilution of 1:30000 incubated at room temperature for 1.5 hours.

Immunohistochemical analysis of paraffinembedded human liver cancer tissue slide using 10205-2-AP (PCNA antibody) at dilution of 1:2000 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0). Immunohistochemical analysis of paraffinembedded human stomach cancer tissue slide using 10205-2-AP (PCNA antibody) at dilution of 1:3000 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0). Immunofluorescent analysis of (4% PFA) fixed MCF-7 cells using PCNA antibody (10205-2-AP) at dilution of 1:400 and CoraLite®488-Conjugated AffiniPure Goat Anti-Rabbit IgG(H+L).