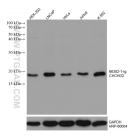
For Research Use Only

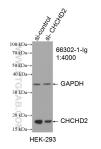
CHCHD2 Monoclonal antibody

Catalog Number:66302-1-lg Featured Product

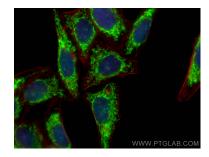
10 Publications



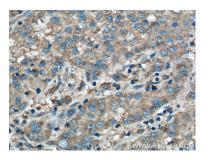
Basic Information	Catalog Number: 66302-1-lg	GenBank Accession Number: BC003079	Purification Method: Protein A purification			
	Size:	GenelD (NCBI):	CloneNo.:			
	1000 µg/ml	51142	2G1G10			
	Source: Mouse Isotype: IgG1 Immunogen Catalog Number: AG24219	UNIPROT ID: Q9Y6H1 Full Name: coiled-coil-helix-coiled-coil-helix domain containing 2	Recommended Dilutions: WB 1:5000-1:50000 IHC 1:50-1:500 IF/ICC 1:1500-1:6000			
				Calculated MW: 151 aa, 16 kDa		
				Observed MW: 17 kDa		
		Applications	Tested Applications:	Positive (Positive Controls: WB : HEK-293 cells, rat liver tissue, LNCaP cells, HeLa cells, Jurkat cells, K-562 cells, L02 cells, SMMC-7721 cells, pig liver tissue	
			WB, IHC, IF/ICC, ELISA			
Cited Applications: WB, IHC, IF						
Species Specificity:	IHC : hum		an liver cancer tissue,			
human, pig, rat	IF/ICC : H		epG2 cells,			
Cited Species: human, mouse						
Note-IHC: suggested antige TE buffer pH 9.0; (*) Alterno retrieval may be performed buffer pH 6.0	atively, antigen					
Background Information	(coiled-coil helix coiled-coil helix Parkinson's disease (ADPD). CHCH in regulating electron flow in the for a cytochrome c oxidase subuni	 domain. Mutations in CHCHD2 gene ID2 is a bi-organellar mediator of oxi mitochondrial electron transport chai 	dative phosphorylation, playing crucial ro n and acting as a nuclear transcription fact /poxic stress. CHCHD2 also regulates cell			
	(coiled-coil helix coiled-coil helix Parkinson's disease (ADPD). CHCH in regulating electron flow in the for a cytochrome c oxidase subun migration and differentiation, mit	() domain. Mutations in CHCHD2 gene HD2 is a bi-organellar mediator of oxi mitochondrial electron transport chai it (COX412) and itself in response to h	have been reported in autosomal domina dative phosphorylation, playing crucial ro n and acting as a nuclear transcription fact /poxic stress. CHCHD2 also regulates cell tosis (PMID: 33967741).			
	(coiled-coil helix coiled-coil helix Parkinson's disease (ADPD). CHCH in regulating electron flow in the for a cytochrome c oxidase suburi migration and differentiation, min	() domain. Mutations in CHCHD2 gene HD2 is a bi-organellar mediator of oxi mitochondrial electron transport chai it (COX412) and itself in response to h tochondrial cristae structure, and apop	have been reported in autosomal domina dative phosphorylation, playing crucial ro n and acting as a nuclear transcription fact /poxic stress. CHCHD2 also regulates cell			
	(coiled-coil helix coiled-coil helix Parkinson's disease (ADPD). CHCH in regulating electron flow in the for a cytochrome c oxidase subuni migration and differentiation, mit Author Ryan Houston	() domain. Mutations in CHCHD2 gene HD2 is a bi-organellar mediator of oxi mitochondrial electron transport chai it (COX4I2) and itself in response to h tochondrial cristae structure, and apop Pubmed ID Journal	have been reported in autosomal domina dative phosphorylation, playing crucial ro n and acting as a nuclear transcription fact /poxic stress. CHCHD2 also regulates cell tosis (PMID: 33967741). Application IHC			
	(coiled-coil helix coiled-coil helix Parkinson's disease (ADPD). CHCH in regulating electron flow in the for a cytochrome c oxidase subuni migration and differentiation, min Author Ryan Houston Siddhesh Aras	() domain. Mutations in CHCHD2 gene HD2 is a bi-organellar mediator of oxi mitochondrial electron transport chai it (COX412) and itself in response to h tochondrial cristae structure, and apop Pubmed ID Journal 34495738 Mol Biol Cell	have been reported in autosomal domina dative phosphorylation, playing crucial ro n and acting as a nuclear transcription fact (poxic stress. CHCHD2 also regulates cell tosis (PMID: 33967741). Application IHC U S A WB			
	(coiled-coil helix coiled-coil helix Parkinson's disease (ADPD). CHCH in regulating electron flow in the for a cytochrome c oxidase subuni migration and differentiation, mit Author Ryan Houston Siddhesh Aras	(c) domain. Mutations in CHCHD2 generation HD2 is a bi-organellar mediator of oximitochondrial electron transport chain it (COX412) and itself in response to his tocchondrial cristae structure, and apop Pubmed ID Journal 34495738 Mol Biol Cell 332257573 Proc Natl Acad Sc	have been reported in autosomal domina dative phosphorylation, playing crucial ro n and acting as a nuclear transcription fact (poxic stress. CHCHD2 also regulates cell tosis (PMID: 33967741). Application IHC U S A WB			
Background Information Notable Publications	(coiled-coil helix coiled-coil helix Parkinson's disease (ADPD). CHCH in regulating electron flow in the for a cytochrome c oxidase subuni migration and differentiation, mit Author Ryan Houston Siddhesh Aras	(c) domain. Mutations in CHCHD2 generation HD2 is a bi-organellar mediator of oximitochondrial electron transport chains it (COX412) and itself in response to histochondrial cristae structure, and apopted in the structure of the s	have been reported in autosomal domina dative phosphorylation, playing crucial ro n and acting as a nuclear transcription fact (poxic stress. CHCHD2 also regulates cell tosis (PMID: 33967741). Application IHC U S A WB			


For technical support and original validation data for this product please contact: E: Proteintech-CN@ptglab.com T: 4006900926 W: ptgcn.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.


Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 66302-1-lg (CHCHD2 antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours. The membrane was stripped and reblotted with HRP-conjugated GAPDH Monoclonal antibody (HRP-60004) as loading control.


WB result of CHCHD2 antibody (66302-1-Ig; 1:4000; incubated at room temperature for 1.5 hours) with sh-Control and sh-CHCHD2 transfected HEK-293 cells.

Immunofluorescent analysis of (4% PFA) fixed HepG2 cells using CHCHD2 antibody (66302-1-lg, Clone: 2G1G10) at dilution of 1:3000 and CoraLite®488-Conjugated Goat Anti-Mouse IgG(H+L), CL594-Phalloidin (red).

Immunohistochemical analysis of paraffinembedded human liver cancer tissue slide using 66302-1-1g (CHCHD2 Antibody) at dilution of 1:200 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded human liver cancer tissue slide using 66302-1-1g (CHCHD2 Antibody) at dilution of 1:200 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).