

小鼠Total MMP-9双抗夹心ELISA检测试剂盒

请在实验前仔细阅读本说明书

产品货号: KE10106

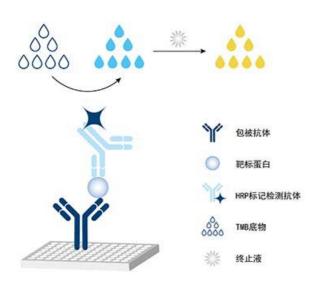
规格: 96T

灵敏度: 0.01 ng/mL

检测范围: 0.156-10 ng/mL

用途: 此试剂盒用于定量检测血清、血浆以及细胞上清中的小鼠Total MMP-9浓度

本产品仅用于科学研究,不适用于临床诊断


目录

- :	背景信息 •••••	3
二:	检测原理 •••••	3
Ξ:	需自备的实验器材 ••••••••••••••••	3
四:	试剂盒组分及储存 ••••••••••••••••	4
五:	实验注意事项 • • • • • • • • • • • • • • • • • • •	4
六:	样本准备 •••••••	4
七:	试剂准备 ••••••	5
八:	实验步骤 •••••	6
九:	实验参数 •••••	7
	9.1 参考标曲图 •••••••	7
	9.2 精密度	7
	9.3 加标回收率 ••••••	7
	9.4 样本值	8
	9.5 灵敏度	8
	9.6 线性	8
	9.7 特异性	9
٠.	<u> </u>	۵

一: 背景信息

MMP9(基质金属蛋白酶 9),也称为明胶酶 B,是基质金属蛋白酶(MMP)家族的成员。MMP 酶家族由至关重要的细胞外基质重塑蛋白酶组成,其活性与正常胚胎发生、组织重塑和许多疾病有关,如关节炎、癌症、牙周炎、肾小球肾炎、脑脊髓炎、动脉粥样硬化和组织溃疡。MMP9 由多种正常和转化细胞产生,包括中性粒细胞、单核细胞、巨噬细胞、星形胶质细胞、成纤维细胞、破骨细胞等。 转基因小鼠模型报告中,MMP9 有助于皮肤癌发生,抑制实验性腹主动脉瘤的发展,并在癌发生过程中触发血管生成转换。

二: 检测原理

◀双抗夹心模式图 (检测抗体直标HRP)

按操作顺序形成抗体夹心结构后,加入TMB 底物,板孔液体由无色变成蓝色,再加入终止 液液体变为黄色后进行吸光度值测定。

三: 需自备的实验器材

- 3.1 酶标仪 (可读取450 nm和630 nm双波长);
- 3.2 高精度移液器及一次性移液器枪头;
- 3.3 洗板机 (亦可手动洗板);
- 3.4 EP管 (用于稀释标准品及样本);
- 3.5 吸水毛巾或滤纸 (用于拍干);
- 3.6 烧杯和量筒;
- 3.7 用于ELISA实验的数据分析的统计拟合软件 (推荐四参数拟合方法),如:Origin,ELISA Calc等。

四: 试剂盒组分及储存

英文名称	中文名称	规格	数量
Microplate	预包被酶标板 - 96孔板	8孔 × 12条	1块
Protein standard	标准品 - 冻干粉状 *	20 ng/瓶	2 瓶
Detection antibody, HRP- conjugated (100×)	HRP标记检测抗体浓缩液(100×)**	120 μL/支	1支
Sample Diluent PT 4B1	样本稀释液 PT 4B1	30 mL/瓶	2 瓶
Detection Diluent	抗体稀释液	30 mL/瓶	1瓶
Wash Buffer Concentrate (20×)	浓缩洗涤液(20×)	30 mL/瓶	1 瓶
ТМВ	显色底物 TMB	12 mL/瓶	1瓶
Stop Solution	终止液	12 mL/瓶	1瓶
Plate Cover Seals	封板膜		4 张

储存条件:

- 1: 未开启试剂盒可在2-8℃条件下存放6个月或者在-20℃条件下存放1年
- 2: 已开启试剂盒可在2-8℃存放7天
- 3: 每次实验均使用新的标准品,使用后丢弃
- * 使用对应的样本稀释液对标准品进行复溶,复溶过程避免产生气泡

五:实验注意事项

- 5.1 避免皮肤接触终止液以及TMB 显色液;
- 5.2 在实验过程中,注意穿戴个人防护装备,如实验服,手套,口罩和护目镜;
- 5.3 请勿将不同批次的试剂进行混用,过期产品请勿使用;
- 5.4 在使用自动洗板机时,板孔加入洗涤液之后,设置30秒的浸泡程序,以提高分析的精确度。

六: 样本准备

- 6.1 血清:全血标本室温凝固 30 min后1000×g 离心15 min,取上清立即使用或分装后-20°C存放,避免反复冻融。
- 6.2 血浆: 可用EDTA、肝素或柠檬酸盐作为抗凝剂,标本采集后1000×g 离心15 min,立即使用或分装后-20℃存放,避免反复冻融
- (注意:标本溶血会影响检测结果,因此溶血标本不宜进行检测)。
- 6.3 细胞上清: 收集细胞培养液,500×g 离心5 min取上清,立即使用或分装后-20℃存放,避免反复冻融。

^{**} 开盖前请离心

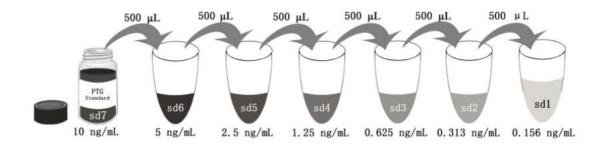
七: 试剂准备

7.1 洗涤液 (1×):

如果洗涤液($20\times$)有晶体析出, 37° C加热至晶体全部溶解。按1:20稀释倍数进行稀释:如取30 mL 浓缩洗涤液($20\times$),加入570 mL 超纯水或去离子水,得到洗涤液($1\times$)。

7.2 HRP标记检测抗体(1×):

开盖前瞬时离心,按1:100比例进行稀释,稀释前根据预先计算实验所需的总量配制(100 μ L/孔),实际配制时应多配制0.1-0.2 mL。如10 μ L HRP标记检测抗体浓缩液(100×)加 990 μ L **抗体稀释液**进行配制,轻轻混匀。


7.3 待检测样本:

不同的样本使用相应的样本稀释液进行稀释,如果样本检测值超过标曲最高范围,可将样本进行一定的稀释后再进行实验,使样本的检测值处于标曲范围内,不同样本的稀释倍数需自行优化。

稀释比推荐如下:小鼠血清和血浆样本1:50或1:100稀释;细胞上清样本1:64或1:128稀释。

7.4 梯度稀释的标准品:

用2 mL PT 4B1样本稀释液复溶标准品,具体操作如下:

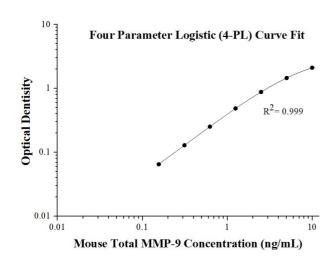
Add# μL of Standard diluted in the previous step	₹	500 μL					
# μL of Sample Diluent PT 4B1	2000 μL	500 μL					
	"sd7"	"sd6"	"sd5"	"sd4"	"sd3"	"sd2"	"sd1"

八:实验步骤

实验前,需要将所需试剂在室温平衡20-30min(HRP标记检测抗体浓缩液不需要平衡室温,即用即取);在进行标准品、样本以及不同试剂加样时,更换枪头,避免接触微孔板的内表面,不同的试剂,使用不同的加样槽。

- 8.1 根据实验用量,取出需要用到的酶标板条,剩余板条加入干燥剂放入铝箔袋密封后存放于4°C,并于一周之内用完;
- 8.2 加样,分别设零孔、标准孔、待测样本孔。零孔加样本稀释液 $100~\mu$ L,余孔分别加梯度稀释的标准品或待测样本 $100~\mu$ L/孔,注意不要产生气泡(建议标准品和样本都做复孔,尽量避免实验误差,确保上样不间断, $5-10~\min$ 完成加样);
- 8.3 酶标板盖上覆膜, 37°C孵育2 h;

8.4 洗涤


- 1) 揭开封板膜(动作轻柔,避免动作过大导致液体溢出串孔),弃液体,拍干;
- 2) 洗涤液(1×)洗涤板条,每孔350-400 μL,洗涤后,甩掉液体拍干板条,重复此步骤4次,避免异物进入板孔以及板条干燥;
- 8.5 每孔加100 μL HRP标记检测抗体(1×)(参照试剂准备部分7.2), 盖上封板膜, 37℃孵育40 min;
- 8.6 重复步骤8.4;
- 8.7 显色:每孔加TMB显色液 $100~\mu$ L, 37° C避光显色 15-20~min(如果颜色偏浅,可适当延长显色时间,不超过30~min;保持显色底物始终处于避光状态,显色底物在加样前应是无色透明,如有变色,请勿使用);
- 8.8 终止: 每孔加终止液100 μL, 蓝色变黄色。终止液与TMB显色液的加样顺序一致; (注意: 眼睛和皮肤避免接触终止液)
- 8.9 读数:以630 nm为校正波长,用酶标仪在450 nm波长测量各孔的光密度(OD值)。加入终止液后5 min内进行读数,若无630 nm 波长,也可直接使用450 nm 波长读数;
- 8.10 数据分析: 每个标准品和样本的OD值需减去零孔的OD值,设置复孔,取其平均值。以标准品的浓度为横坐标,OD值为纵坐标,使用专业软件(如Origin、ELISACalc等)进行四参数拟合(4-PL),根据样本的OD值由标准曲线推算出拟合浓度,乘以稀释倍数得到样本的实测浓度。

操作流程如下:

步骤	试剂	体积	孵育时间	洗涤次数	孵育温度
1	标准品或样本	100 μL	120 分钟	4 次	覆膜后37℃孵育
2	HRP标记检测抗体(1×)	100 μL	40 分钟	4 次	覆膜后37℃孵育
3	显色 TMB	100 μL	15-20 分钟	不需要洗涤	覆膜后37℃孵育,避光
4	终止液	100 μL	0 分钟	不需要洗涤	-
5	加入终止液后以630 nm为校正波长,在450 nm处测量OD值,此过程建议不超过5分钟				

九: 实验参数

9.1 参考标曲图

(ng/mL)	0.D	Average	Corrected
0	0.0003 0.0030	0.0017	-
0.156	0.0636 0.0701	0.0669	0.0652
0.313	0.1295 0.1323	0.1309	0.1292
0.625	0.2486 0.2604	0.2545	0.2528
1.25	0.4889 0.4885	0.4887	0.4870
2.5	0.8764 0.8903	0.8834	0.8817
5	1.4611 1.4583	1.4598	1.4581
10	2.0983 2.1365	2.1174	2.1157

9.2 精密度

板内精密度: 3个不同浓度的样本在板内重复测定 20次; 板间精密度: 3个不同浓度的样本在板间重复测定 24次。

		板内精密度((CV内)	
样本	数量	平均值 (ng/mL)	标准差	变异系数CV%
1	20	4.95	0.26	5.27
2	20	1.15	0.04	3.33
3	20	0.30	0.01	4.88

板间精密度 (CV 间)							
样本	数量	平均值 (ng/mL)	标准差	变异系数CV%			
1	24	4.95	0.19	3.90			
2	24	1.14	0.04	3.54			
3	24	0.32	0.01	4.02			

9.3 加标回收率

样本稀释后,在标曲范围内选择高、中、低3个浓度,进行小鼠Total MMP-9的加标回收率实验,结果如下:

样本类型	稀释倍数	平均值 (%)	范围 (%)
小鼠血清	1:200	89	82-98
(7.) 展行[[[]]	1:400	84	80-88
细胞上清	1:256	95	82-113
知此上/月	1:512	93	85-101

9.4 样本值

小鼠血清 - 应用本试剂盒,检测小鼠血清中小鼠Total MMP-9的浓度。

样本类型	均值 (ng/mL)	范围 (ng/mL)
小鼠血清 (n=16)	117.52	46.86-240.93

细胞上清 - 在含有 10% 胎牛血清、50 μM β-巯基乙醇、2 mM L-谷氨酰胺、100 U/mL 青霉素和100 μg/mL 硫酸链霉素的 RPMI 培养基中培养小鼠肺组织(100 mL 培养基中 1-2 mm 大小的 3 个肺片)。收集细胞上清检测小鼠Total MMP-9含量,检测浓度为 255.04 ng/mL。

9.5 灵敏度

用20个重复的零孔平均OD值加上两倍标准差得到的OD值带入标准曲线拟合出对应的浓度值,此试剂盒中小鼠Total MMP-9的灵敏度为0.01 ng/mL。

9.6 线性

小鼠血清和细胞上清用样本稀释液稀释样本,使稀释后的检测值处于标曲范围内,线性数据如下:

(小鼠血清样本预先稀释25倍,细胞上清样本预先稀释32倍。)

		小鼠血清	细胞上清
1:2	均值 (%)	100	100
1.2	范围 (%)	-	-
1:4	均值 (%)	97	102
1.4	范围 (%)	84-106	97-110
1:8	均值 (%)	103	102
1.0	范围 (%)	97-111	93-114
1:16	均值 (%)	100	103
1.10	范围 (%)	85-112	95-116

9.7 特异性

本试剂盒特异性识别天然和重组小鼠Total MMP-9,加入50 ng/mL以下细胞因子,无明显交叉反应。

Human: Mouse:

MMP-1 Lipocalin-2/NGAL

MMP-2 MMP-2

MMP-3

MMP-7

MMP-8

十:参考文献

- 1. Roy R, Yang J, Moses MA. Matrix Metalloproteinases As Novel Biomarkers and Potential Therapeutic Targets in Human Cancer[J]. Journal of Clinical Oncology, 2009, 27(31):5287-5297.
- 2. Nagase H. Matrix metalloproteinases a mini-review[J]. Contributions to Nephrology, 1994, 107:85.
- 3. Stamenkovic I. Extracellular Matrix Remodelling: The Role of Matrix Metalloproteinases[J]. The Journal of Pathology, 2003, 200(4):448-464.
- 4. Pytliak M , Viola Vargová, Viola Mechírová. Matrix Metalloproteinases and Their Role in Oncogenesis: A Review[J]. Onkologie, 2012, 35(1-2):49-53.
- 5. Asli T. Relationship Between MMP-1, MMP-9, TIMP-1, IL-6 and Risk Factors, Clinical Presentation, Extent and Severity of Atherosclerotic Coronary Artery Disease[J]. The Open Cardiovascular Medicine Journal, 2011, 5(1):110-116.
- 6. Coussens L M , Tinkle C L , Hanahan D , et al. MMP-9 Supplied by Bone Marrow–Derived Cells Contributes to Skin Carcinogenesis [J]. Cell, 2000, 103(3):481-490.
- 7. Pyo R, Lee J K, Shipley J M, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms[J]. Journal of Clinical Investigation, 2000, 105(11):1641-9.
- 8. Bergers G. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis[J]. Nat Cell Biol, 2000, 2.