Bimiralisib

Bimiralisib (PI3K-IN-2) 是一种有效的,可渗透脑的 mTOR/PI3K 抑制剂,是一种 mTORC1和 mTORC2抑制剂。它能够抑制 PI3Kα,PI3Kδ,PI3Kβ,PI3Kγ和 mTOR,IC50分别为 33 nM,451 nM,661 nM,708 nM 和 89 nM。

CAS号

1225037-39-7

分子式

C17H20F3N7O2

主要靶点

mTOR|PI3K|S6 Kinase|Others

仅限科研使用

Cat No : CM05964

Print datasheet

Synonyms

5-(4,6-dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine|PQR309|PI3K-IN-2



产品信息

Bimiralisib (PI3K-IN-2) is an orally bioavailable pan inhibitor of PI3K and inhibitor of the mTOR, with potential antineoplastic activity. PI3K-IN-2 inhibits the PI3K kinase isoforms alpha, beta, gamma and delta and, to a lesser extent, mTOR kinase, which may result in tumor cell apoptosis and growth inhibition in cells overexpressing PI3K/mTOR. Activation of the PI3K/mTOR pathway promotes cell growth, survival, and resistance to both chemotherapy and radiotherapy.

CAS号 1225037-39-7
分子式 C17H20F3N7O2
主要靶点 mTOR|PI3K|S6 Kinase|Others
主要通路 PI3K/Akt/mTOR信号通路|MAPK信号通路|其他
分子量 411.38
纯度 97.58%, 此纯度可做参考,具体纯度与批次有关系,可咨询客服
储存条件 Powder: -20°C for 3 years | In solvent: -80°C for 1 year
别名 5-(4,6-dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine|PQR309|PI3K-IN-2

靶点活性

PI3Kβ:11 nM(Kd)|PI3Kα:1.5 nM(Kd)|PI3Kγ:25 nM(Kd)|mTOR:12 nM(Kd)|PI3Kδ:25 nM(Kd)

溶解度

DMSO:5 mg/mL (12.15 mM)

参考文献

1.Beaufils F, et al. 5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology. J Med Chem. 2017 Sep 14;60(17):7524-7538. 2.Wicki A, et al. First-in human, phase 1, dose-escalation pharmacokinetic and pharmacodynamic study of the oral dual PI3K and mTORC1/2 inhibitor PQR309 in patients with advanced solid tumors (SAKK 67/13). Eur J Cancer. 2018 Jun;96:6-16.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

质量   浓度   体积   分子量 *
=
×
×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2

浓度 (start) × 体积 (start) = 浓度 (final) × 体积 (final)
×
=
×
C1   V1   C2   V2